Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Support Care Cancer ; 32(4): 221, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467829

RESUMO

BACKGROUND: Vaccination against SARS-CoV-2 is recommended for cancer patients. However, long-term data on the effectiveness in the pediatric setting are lacking. METHODS: Pediatric patients < 18 years on active treatment for cancer and without prior SARS-CoV-2 infection received three doses of an mRNA vaccine. The clinical course and humoral and cellular immunity were evaluated at the end of the follow-up period of ≥ 1 year after the third dose of vaccine. RESULTS: SARS-CoV-2 infection occurred in 17 of 19 analyzed patients (median age 16.5 years) during the follow-up period (median 17 months), but no severe symptoms were seen. At ≥ 1 year after the last SARS-CoV-2 antigen exposure, 4 of 17 patients had received the recommended booster vaccine. At the end of the follow-up period, all evaluable 15 patients had anti-SARS-CoV-2 receptor-binding domain IgG antibodies. Twelve of the 15 patients had neutralizing antibody titers ≥ 1:10 against the Delta variant and 12/15 and 13/15 against the BA.1 and BA.5 variants, respectively. Specific T cells against SARS-CoV-2 antigens were seen in 9/13 patients. CONCLUSIONS: Most SARS-CoV-2-vaccinated pediatric cancer patients had SARS-CoV-2 infections and limited interest in booster vaccination. At 1 year after the last antigen exposure, which was mostly an infection, humoral immune responses remained strong. TRIAL REGISTRATION: German Clinical Trials Register DRKS00025254, May 26, 2021.


Assuntos
COVID-19 , Neoplasias , Vacinas , Humanos , Criança , Adolescente , SARS-CoV-2 , COVID-19/prevenção & controle , Seguimentos , Anticorpos Antivirais , Neoplasias/terapia , Vacinação
2.
Stud Health Technol Inform ; 310: 89-93, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269771

RESUMO

Medical ontologies are mostly available in English. This presents a language barrier that is a limitation in research and automated processing of patient data. The manual translation of ontologies is complex and time-consuming. However, there are commercial translation tools that have shown promising results in the field of medical terminology translation. The aim of this study is to translate selected terms of the Human Phenotype Ontology (HPO) from English into German using commercial translators. Six medical experts evaluated the translation candidates in an iterative process. The results show commercial translators, with DeepL in the lead, provide translations that are positively evaluated by experts. With a broader study scope and additional optimization techniques, commercial translators could support and facilitate the process of translating medical ontologies.


Assuntos
Pessoal Técnico de Saúde , Idioma , Humanos , Software
3.
Infection ; 52(2): 461-469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37889376

RESUMO

INTRODUCTION: Falciparum malaria remains one of the deadliest infectious diseases worldwide. In Germany, it is mainly an imported infection among travellers. Rates of coinfection are often unknown, and a clinical rationale for the beneficial use of calculated antibiotic therapy in patients with malaria and suspected coinfection is lacking. METHODS: We conducted an analysis of all in-patients treated with falciparum malaria at a German infectious diseases centre in vicinity to one of Europe's major airports for 2010-2019. Logistic regression and time-to-event analysis were used to evaluate predictors for bacterial coinfection, the use of antibacterial substances, as well as their influence on clinical course. RESULTS: In total, 264 patients were included. Of those, 64% received an additional antibacterial therapy (n = 169). Twenty-nine patients (11.0%) were found to have suffered from a relevant bacterial coinfection, while only a small fraction had relevant bacteremia (n = 3, 1.4%). However, patients with severe malaria did not suffer from coinfections more frequently (p = 0.283). CRP levels were not a reliable predictor for a bacterial coinfection (OR 0.99, 95% CI 0.94-1.06, p = 0.850), while another clinical focus of infection was positively associated (OR 3.86, 95% CI 1.45-11.55, p = 0.010). CONCLUSION: Although bacterial coinfections were rare in patients with malaria at our centre, the risk does not seem negligible. These data point rather towards individual risk assessment in respective patients than to general empiric antibiotic use.


Assuntos
Antimaláricos , Coinfecção , Doenças Transmissíveis , Malária Falciparum , Malária , Humanos , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Antibacterianos/uso terapêutico , Viagem , Doenças Transmissíveis/tratamento farmacológico , Antimaláricos/uso terapêutico
4.
Cell Rep ; 42(8): 112888, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527039

RESUMO

Evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has led to the emergence of sublineages with different patterns of neutralizing antibody evasion. We report that Omicron BA.4/BA.5 breakthrough infection of individuals immunized with SARS-CoV-2 wild-type-strain-based mRNA vaccines results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization but does not efficiently boost BA.2.75.2, XBB, or XBB.1.5 neutralization. In silico analyses showed that the Omicron spike glycoprotein lost most neutralizing B cell epitopes, especially in sublineages BA.2.75.2, XBB, and XBB.1.5. In contrast, T cell epitopes are conserved across variants including XBB.1.5. T cell responses of mRNA-vaccinated, SARS-CoV-2-naive individuals against the wild-type strain, Omicron BA.1, and BA.4/BA.5 were comparable, suggesting that T cell immunity against recent sublineages including XBB.1.5 may remain largely unaffected. While some Omicron sublineages effectively evade B cell immunity, spike-protein-specific T cell immunity, due to the nature of polymorphic cell-mediated immune responses, may continue to contribute to prevention/limitation of severe COVID-19 manifestation.


Assuntos
COVID-19 , Linfócitos T , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
J Clin Med ; 12(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176604

RESUMO

BACKGROUND: Genesis and the prognostic value of olfactory dysfunction (OD) in COVID-19 remain partially described. The objective of our study was to characterize OD during SARS-CoV-2 infection and to examine whether testing of OD may be a useful tool in clinical practice in order to early identify patients with SARS-CoV-2 infection. METHODS: Olfactory function assessment was objectively carried out using the u-Smell-it® test. In a cross-sectional study part, we evaluated this test in a control cohort of SARS-CoV-2 negative tested patients, who attended the University Hospital Frankfurt between May 2021 and March 2022. In a second longitudinal study part, sensitivity and specificity of OD was evaluated as a diagnostic marker of a SARS-CoV-2 infection in Frankfurt am Main, Germany in SARS-CoV-2 infected patients and their close contacts. RESULTS: Among 494 SARS-CoV-2 negative tested patients, OD was detected in 45.7% and was found to be significantly associated with the male gender (p < 0.001), higher age (p < 0.001), cardiovascular and pulmonary comorbidities (p < 0.001; p = 0.03). Among 90 COVID-19 positive patients, OD was found in 65.6% and was significantly associated with male gender and positive smoking status (p = 0.04 each). Prevalence and severity of OD were significantly increased in infections with the Delta variant (B.1.617.2) compared to those with the Omicron variant (BA.1.1.529). Diagnostic sensitivity and specificity of OD for diagnosis of SARS-CoV-2 infection were 69% and 64%, respectively. CONCLUSION: OD is common in COVID-19 negative and positive tested patients with significantly different prevalence rates observed between different variants. Diagnostic accuracy of OD is not high enough to implement olfactory testing as a tool in diagnostic routine to early identify patients with a SARS-CoV-2 infection.

6.
J Med Case Rep ; 17(1): 121, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013596

RESUMO

BACKGROUND: Congenital toxoplasmosis can be associated with serious clinical consequences from fetus to adulthood. Hence, early detection is required to minimize severe sequelae through appropriate therapy. We describe the first case of a congenital toxoplasmosis after maternal coinfection with Toxoplasma gondii and severe acute respiratory syndrome coronavirus 2 and the challenging serological diagnosis of the disease in this context. CASE PRESENTATION: A Caucasian boy was born at 27 weeks 2 days of gestation by cesarean section due to maternal COVID-19-related respiratory failure. Postpartum serological screening of the mother revealed a previously unrecognized active Toxoplasma gondii infection. The premature child initially tested negative for anti- Toxoplasma gondii immunoglobulin A and M antibodies 1, 2 and 4 weeks after birth, whereas immunoglobulin G antibodies were only weakly positive with no evidence of child-specific production. Neither neurological nor ophthalmological abnormalities were detected. Approximately 3 months after birth, serological testing indicated a congenital toxoplasmosis by presence of immunoglobulin A and M, in combination with a child-specific immunoglobulin G synthesis. Additionally, cerebrospinal fluid was tested positive for Toxoplasma gondii DNA. Although no clinical manifestations of congenital toxoplasmosis were detected, an antiparasitic therapy was initiated to minimize the risk of late sequelae. There were no hints for a transplacental transmission of severe acute respiratory syndrome coronavirus 2. CONCLUSION: This case raises the awareness of possible coinfections with the risk of transplacental transmission in cases of maternal coronavirus disease 2019. The report emphasizes the need for screening vulnerable patients for toxoplasmosis in general and especially in the context of pregnancy. It becomes evident that prematurity can complicate the serological diagnosis of congenital toxoplasmosis due to a delayed antibody response. Repeated testing is recommended to carefully monitor children at risk and especially those with a history of preterm birth.


Assuntos
COVID-19 , Coinfecção , Nascimento Prematuro , Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Masculino , Gravidez , Recém-Nascido , Humanos , Feminino , Toxoplasmose Congênita/diagnóstico , Toxoplasmose Congênita/prevenção & controle , SARS-CoV-2 , Cesárea , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M
8.
Clin Infect Dis ; 76(3): e510-e513, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35901198

RESUMO

Our study in 21 pediatric cancer patients demonstrates that 3 doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA vaccine (BioNTech/Pfizer) elicited both humoral and cellular immunity in most patients during chemotherapy. Immunity was stronger in children with solid tumors and during maintenance therapy compared to those with hematological malignancies or during intensive chemotherapy. Clinical Trials Registration.ȃGerman Registry for Clinical Trials (DRKS00025254).


Assuntos
COVID-19 , Neoplasias , Criança , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunidade Celular , Vacinas de mRNA , Neoplasias/tratamento farmacológico , RNA Mensageiro , SARS-CoV-2 , Vacinação
10.
Sci Immunol ; 7(77): eade2283, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36125366

RESUMO

BNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum-neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 variants of concern (VOCs) yet less against the highly contagious Omicron sublineages BA.4 and BA.5 that have displaced previous variants. Because the latter sublineages are derived from Omicron BA.2, we characterized serum-neutralizing activity of COVID-19 mRNA vaccine triple-immunized individuals who experienced BA.2 breakthrough infection. We demonstrate that sera of these individuals have broadly neutralizing activity against previous VOCs and all tested Omicron sublineages, including BA.2-derived variants BA.2.12.1 and BA.4/BA.5. Furthermore, applying antibody depletion, we showed that neutralization of BA.2 and BA.4/BA.5 sublineages by BA.2 convalescent sera is driven to a considerable extent by antibodies targeting the N-terminal domain (NTD) of the spike glycoprotein. However, neutralization by Omicron BA.1 convalescent sera depends exclusively on antibodies targeting the receptor binding domain (RBD). These findings suggest that exposure to Omicron BA.2, in contrast to BA.1 spike glycoprotein, triggers substantial NTD-specific recall responses in vaccinated individuals and thereby enhances the neutralization of BA.4/BA.5 sublineages. Given the current epidemiology with a predominance of BA.2-derived sublineages such as BA.4/BA.5 and rapidly ongoing evolution, these findings helped to inform development of our Omicron BA.4/BA.5-adapted vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Vacinas contra COVID-19 , Vacina BNT162 , Soroterapia para COVID-19 , Vacinas de mRNA
12.
Vaccines (Basel) ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891326

RESUMO

The emergence of SARS-CoV-2 Omicron subvariants prompted countries to call for accelerated booster vaccinations to limit disease and transmission. Here, we characterized correlates of protection over time after the second booster or after Omicron BA.1 infection comparing variants of concern (VOCs). Sera from subjects before and two and seven weeks after the second booster or after Omicron infection were examined for the level of Spike receptor-binding-domain (RBD)-specific antibodies. Furthermore, neutralizing antibodies (nABs) were characterized in in vitro neutralization assays comparing the variants of concern Alpha, Beta, Delta, and Omicron BA.1 and BA.2 against the ancestral strain B.1. Here, the second booster resulted in an increase in anti-RBD-IgG-antibodies, remaining nearly constant over time, accompanied by an increase in nABs against B.1 and the VOCs Alpha, Beta, Delta, and Omicron BA.1 and BA.2. However, compared to B.1, the neutralizing capacity against the Omicron subvariants remained low and was limited after the second booster vaccination. This indicates that antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three individuals of our study cohort became infected with Omicron BA.1 after the second booster. T cell activation was measured by interferon-gamma release assays in a subgroup of subjects and was increased in all subjects tested after the second booster vaccination, correlating with the amount of Spike-specific antibodies. In subjects with Omicron BA.1 breakthrough infection, a significant increase in nABs to all VOCs studied was observed independently of booster vaccinations. Taken together, our data indicate that a second booster or Omicron BA.1 infection mediate a substantial increase in anti-Spike IgG antibodies; however, infection with Omicron BA.1 induced a stronger increase in neutralizing antibodies against the different VOCs.

13.
Front Aging ; 3: 883724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821813

RESUMO

The immune response is known to wane after vaccination with BNT162b2, but the role of age, morbidity and body composition is not well understood. We conducted a cross-sectional study in long-term care facilities (LTCFs) for the elderly. All study participants had completed two-dose vaccination with BNT162b2 five to 7 months before sample collection. In 298 residents (median age 86 years, range 75-101), anti-SARS-CoV-2 rector binding IgG antibody (anti-RBD-IgG) concentrations were low and inversely correlated with age (mean 51.60 BAU/ml). We compared the results to Health Care Workers (HCW) aged 18-70 years (n = 114, median age: 53 years), who had a higher mean anti-RBD-IgG concentration of 156.99 BAU/ml. Neutralization against the Delta variant was low in both groups (9.5% in LTCF residents and 31.6% in HCWs). The Charlson Comorbidity Index was inversely correlated with anti-RBD-IgG, but not the body mass index (BMI). A control group of 14 LTCF residents with known breakthrough infection had significant higher antibody concentrations (mean 3,199.65 BAU/ml), and 85.7% had detectable neutralization against the Delta variant. Our results demonstrate low but recoverable markers of immunity in LTCF residents five to 7 months after vaccination.

14.
EBioMedicine ; 82: 104158, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834885

RESUMO

BACKGROUND: In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS: In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS: Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION: Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING: This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , Vacina BNT162 , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2 , Soroterapia para COVID-19
15.
Sci Immunol ; 7(75): eabq2427, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35653438

RESUMO

Omicron is the evolutionarily most distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) to date. We report that Omicron BA.1 breakthrough infection in BNT162b2-vaccinated individuals resulted in strong neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 VOCs but not against the Omicron sublineages BA.4 and BA.5. BA.1 breakthrough infection induced a robust recall response, primarily expanding memory B (BMEM) cells against epitopes shared broadly among variants, rather than inducing BA.1-specific B cells. The vaccination-imprinted BMEM cell pool had sufficient plasticity to be remodeled by heterologous SARS-CoV-2 spike glycoprotein exposure. Whereas selective amplification of BMEM cells recognizing shared epitopes allows for effective neutralization of most variants that evade previously established immunity, susceptibility to escape by variants that acquire alterations at hitherto conserved sites may be heightened.


Assuntos
COVID-19 , Proteínas do Envelope Viral , Vacina BNT162 , Epitopos , Humanos , Glicoproteínas de Membrana , Células B de Memória , Testes de Neutralização , SARS-CoV-2
16.
Int J Infect Dis ; 118: 126-131, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35247549

RESUMO

BACKGROUND: International travel poses the risk of importing SARS-CoV-2 infections and introducing new viral variants into the country of destination. Established measures include mandatory quarantine with the opportunity to abbreviate it with a negative rapid antigen test (RAT). METHODS: A total of 1,488 returnees were tested for SARS-CoV-2 with both PCR and RAT no earlier than 5 days after arrival. We assessed the sensitivity and specificity of the RAT. Positive samples were evaluated for infectivity in vitro in a cell culture outgrowth assay. We tracked if participants who tested negative were reported positive within 2 weeks of the initial test. RESULTS: Potential infectiousness was determined based on symptom onset analysis, resulting in a sensitivity of the antigen test of 89% in terms of infectivity. The specificity was 100%. All positive outgrowth assays were preceded by a positive RAT, indicating that all participants with proven in vitro infectivity were correctly identified. None of the negative participants tested positive during the follow-up. CONCLUSIONS: RAT no earlier than the 5th day after arrival was a reliable method for detecting infectious travellers and can be recommended as an appropriate method for managing SARS-CoV-2 travel restrictions. Compliance to the regulations and a high standard of test quality must be ensured.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Quarentena , Sensibilidade e Especificidade , Viagem
17.
J Clin Med ; 10(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34945047

RESUMO

Testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by RT-PCR is a vital public health tool in the pandemic. Self-collected samples are increasingly used as an alternative to nasopharyngeal swabs. Several studies suggested that they are sufficiently sensitive to be a useful alternative. However, there are limited data directly comparing several different types of self-collected materials to determine which material is preferable. A total of 102 predominantly symptomatic adults with a confirmed SARS-CoV-2 infection self-collected native saliva, a tongue swab, a mid-turbinate nasal swab, saliva obtained by chewing a cotton pad and gargle lavage, within 48 h of initial diagnosis. Sample collection was unsupervised. Both native saliva and gargling with tap water had high diagnostic sensitivity of 92.8% and 89.1%, respectively. Nasal swabs had a sensitivity of 85.1%, which was not significantly inferior to saliva (p = 0.092), but 16.6% of participants reported they had difficult in self-collection of this sample. A tongue swab and saliva obtained by chewing a cotton pad had a significantly lower sensitivity of 74.2% and 70.2%, respectively. Diagnostic sensitivity was not related to the presence of clinical symptoms or to age. When comparing self-collected specimens from different material, saliva, gargle lavage or mid-turbinate nasal swabs may be considered for most symptomatic patients. However, complementary experiments are required to verify that differences in performance observed among the five sampling modes were not attributed to collection impairment.

18.
Acta Paediatr ; 110(12): 3315-3321, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525232

RESUMO

AIM: It can be challenging to distinguish COVID-19 in children from other common infections. We set out to determine the rate at which children consulting a primary care paediatrician with an acute infection are infected with SARS-CoV-2 and to compare distinct findings. METHOD: In seven out-patient clinics, children aged 0-13 years with any new respiratory or gastrointestinal symptoms and presumed infection were invited to be tested for SARS-CoV-2. Factors that were correlated with testing positive were determined. Samples were collected from 25 January 2021 to 01 April 2021. RESULTS: Seven hundred and eighty-three children participated in the study (median age 3 years and 0 months, range 1 month to 12 years and 11 months). Three hundred and fifty-eight were female (45.7%). SARS-CoV-2 RNA was detected in 19 (2.4%). The most common symptoms in children with as well as without detectable SARS-CoV-2 RNA were rhinitis, fever and cough. Known recent exposure to a case of COVID-19 was significantly correlated with testing positive, but symptoms or clinical findings were not. CONCLUSION: COVID-19 among the children with symptoms of an acute infection was uncommon, and the clinical presentation did not differ significantly between children with and without evidence of an infection with SARS-CoV-2.


Assuntos
COVID-19 , Criança , Feminino , Febre , Humanos , Lactente , Atenção Primária à Saúde , RNA Viral , SARS-CoV-2
19.
Med Microbiol Immunol ; 210(4): 235-244, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34196781

RESUMO

The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Laboratory work with SARS-CoV-2 in a laboratory setting was rated to biosafety level 3 (BSL-3) biocontainment level. However, certain research applications in particular in molecular biology require incomplete denaturation of the proteins, which might cause safety issues handling contaminated samples. In this study, we evaluated lysis buffers that are commonly used in molecular biological laboratories for their ability to inactivate SARS-CoV-2. In addition, viral stability in cell culture media at 4 °C and on display glass and plastic surfaces used in laboratory environment was analyzed. Furthermore, we evaluated chemical and non-chemical inactivation methods including heat inactivation, UV-C light, addition of ethanol, acetone-methanol, and PFA, which might be used as a subsequent inactivation step in the case of insufficient inactivation. We infected susceptible Caco-2 and Vero cells with pre-treated SARS-CoV-2 and determined the tissue culture infection dose 50 (TCID50) using crystal violet staining and microscopy. In addition, lysates of infected cells and virus containing supernatant were subjected to RT-qPCR analysis. We have found that guanidine thiocyanate and most of the tested detergent containing lysis buffers were effective in inactivation of SARS-CoV-2, however, the M-PER lysis buffer containing a proprietary detergent failed to inactivate the virus. In conclusion, careful evaluation of the used inactivation methods is required especially for non-denaturing buffers. Additional inactivation steps might be necessary before removal of lysed viral samples from BSL-3.


Assuntos
Anti-Infecciosos/farmacologia , COVID-19/prevenção & controle , COVID-19/virologia , Guanidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tiocianatos/farmacologia , Inativação de Vírus , Animais , Células CACO-2 , Linhagem Celular , Chlorocebus aethiops , Contenção de Riscos Biológicos , Humanos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/fisiologia , Manejo de Espécimes/métodos , Fatores de Tempo , Células Vero
20.
J Infect Dis ; 224(7): 1109-1114, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34223909

RESUMO

Whether monoclonal antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been investigated using pseudoviruses. In this study we show that bamlanivimab, casirivimab, and imdevimab efficiently neutralize authentic SARS-CoV-2, including variant B.1.1.7 (alpha), but variants B.1.351 (beta) and P.2 (zeta) were resistant against bamlanivimab and partially resistant to casirivimab. Whether antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantshas been investigated using pseudoviruses. We show that authentic SARS-CoV-2 carrying E484K were resistant against bamlanivimab and less susceptible to casirivimab, convalescent and vaccine-elicited sera.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Substituição de Aminoácidos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Humanos , Mutação de Sentido Incorreto , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA